6110 measured reflections

 $R_{\rm int} = 0.022$

2897 independent reflections

2467 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Propane-1,3-diaminium pyridine-2,3dicarboxylate monohydrate

Faranak Manteghi,^a Mohammad Ghadermazi^b and Hossein Aghabozorg^c*

^aFaculty of Chemistry, Iran University of Science and Technology, Tehran, Iran, ^bDepartment of Chemistry, Kurdistan University, Sanandaj, Iran, and ^cDepartment of Chemistry, Teacher Training University, Tehran, Iran Correspondence e-mail: haghabozorg@yahoo.com

Received 25 April 2007; accepted 30 April 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.097; data-to-parameter ratio = 17.6.

The title compound, $C_3H_{12}N_2^{2+}C_7H_3NO_4^{2-}H_2O$, contains one dicationic fragment, one dianionic fragment and one water molecule. The two carboxylate groups of the pyridine-2,3-dicarboxylate (pydc²⁻) fragment are almost perpendicular to each other [dihedral angle 83.10 (8)°]. In the crystal structure, intermolecular N-H···O, N-H···N, O-H···O and C-H···O hydrogen bonds and edge-to-face π - π stacking, together with ion pairing, are responsible for extending the structure in three dimensions, resulting in a supramolecular network.

Related literature

For general backgroud, see: Allen *et al.* (1987); Mendoza-Diaz *et al.* (2005); Chandrasekhar *et al.* (2001).

Experimental

Crystal data $C_3H_{12}N_2^{2+}\cdot C_7H_3NO_4^{2-}\cdot H_2O$ $M_r = 259.27$ Triclinic, $P\overline{1}$ a = 7.4274 (5) Å b = 8.6176 (5) Å c = 10.7314 (7) Å $\alpha = 109.989$ (1)° $\beta = 102.225$ (1)°

 $\gamma = 100.883 (1)^{\circ}$ $V = 604.81 (7) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 100 (2) K $0.24 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.970, T_{\max} = 0.978$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	165 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
2897 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1

rijulogen bond geometrij (ri,	Η	vdrogen-	bond	geometry	(Å,	°)
-------------------------------	---	----------	------	----------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2 B ····O4 ⁱ	0.91	2.24	2.918 (1)	131
$N2 - H2B \cdot \cdot \cdot N1^{i}$	0.91	2.14	2.967 (2)	150
$N2 - H2C \cdot \cdot \cdot O1$	0.91	1.92	2.823 (1)	175
$N2 - H2D \cdots O4^{ii}$	0.91	1.89	2.798 (2)	174
$N3 - H3B \cdot \cdot \cdot O2^{iii}$	0.91	1.86	2.752 (2)	168
N3−H3C···O5	0.91	1.97	2.836 (2)	158
$N3-H3D\cdots O3^{iv}$	0.91	1.89	2.799 (1)	174
$O5-H5A\cdots O1^{v}$	0.82	1.91	2.702 (1)	161
$O5-H5B\cdots O1^{ii}$	0.82	2.52	3.094 (1)	128
$O5-H5B\cdots O3^{ii}$	0.82	2.15	2.890 (1)	151
$C10-H10B\cdots O2^{iv}$	0.99	2.38	3.102 (2)	129

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x - 1, y, z; (iii) x - 1, y - 1, z; (iv) -x + 2, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2005); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Iran University of Science and Technology for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2241).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). APEX2 (Version 2.0-1), SAINT (Version 7.23a), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chandrasekhar, V., Baskar, V., Kingsley, S., Nagendrana, S. & Butcher, R. J. (2001). *CrystEngComm*, **17**, 1–3.
- Mendoza-Diaz, G., Rigotti, G., Piro, O. E. & Sileo, E. E. (2005). *Polyhedron*, **24**, 777–783.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o2809 [doi:10.1107/S1600536807021368]

Propane-1,3-diaminium pyridine-2,3-dicarboxylate monohydrate

F. Manteghi, M. Ghadermazi and H. Aghabozorg

Comment

Pyridinedicarboxylic acids are applied as proton donors in ion pairs, as ligands in coordination compounds, and as hydrogen donor or acceptor in hydrogen bondings. However, their metal complexes have interesting properties in biological systems (Mendoza-Diaz *et al.*, 2005).

The molecule of the title compound, (I), contains one dicationic and one dianionic fragments and also one water molecule (Fig. 1). The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The two carboxylate groups of $(pydc)^{2-}$ fragment are perpendicular to each other.

As can be seen from the packing diagram (Fig. 2), the intramolecular N—H···O and intermolecular N—H···O, N—H···N, O—H···O and C—H···O hydrogen bonds (Table 1) and edge to face π - π stacking together with ion pairing are responsible for expanding the structure in three dimension resulting in a supramolecular network.

The bond distances and angles of C–H··· π stacking are 2.81 Å (H·· π) and 136° (C–H·· π), which are within normal range (Chandrasekhar *et al.*, 2001). Another notable feature of the structure as shown in Fig. 2, is that the hydrogen bonds between water molecules, NH₃⁺ tail of diamine and O atom of carboxylate group (*i.e.* two O5, two N3 and two O3 atoms and the related H atoms) form a 12-membered cyclic arrangement with a centre of symmetry in the middle of the ring.

Experimental

The title compound was synthesized by adding pyridine-2,3-dicarboxylic acid (10 mmol) to propane-1,3-diamine (10 mmol) in tetrahydrofuran (40 ml), and refluxing it. After a while, a white precipitate was obtained which was recrystallized to colorless crystals suitable for X-ray analysis.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH₂), N—H = 0.91 Å (for NH₃) and C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,O,N)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Propane-1,3-diaminium pyridine-2,3-dicarboxylate monohydrate

Crystal data	
$C_{3}H_{12}N_{2}^{2+}C_{7}H_{3}NO_{4}^{2-}H_{2}O$	Z = 2
$M_r = 259.27$	$F_{000} = 276$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.424 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.4274 (5) Å	Cell parameters from 265 reflections
b = 8.6176 (5) Å	$\theta = 3-28^{\circ}$
c = 10.7314 (7) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 109.989 (1)^{\circ}$	T = 100 (2) K
$\beta = 102.225 (1)^{\circ}$	Prism, colourless
$\gamma = 100.883 \ (1)^{\circ}$	$0.24\times0.22\times0.18~mm$
$V = 604.81 (7) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	2897 independent reflections
Radiation source: fine-focus sealed tube	2467 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 100(2) K	$\theta_{\text{max}} = 28.0^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -9 \rightarrow 9$
$T_{\min} = 0.970, \ T_{\max} = 0.978$	$k = -11 \rightarrow 11$
6110 measured reflections	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 0.1817P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.097$	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.04	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
2897 reflections	Extinction correction: none

165 parametersPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier mapHydrogen site location: constr

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.97996 (13)	0.66664 (11)	0.41529 (9)	0.01712 (19)
O2	1.21462 (12)	0.91436 (10)	0.50032 (8)	0.01534 (19)
03	1.32210 (12)	0.61030 (11)	0.31424 (8)	0.01571 (19)
O4	1.39865 (14)	0.59160 (13)	0.11966 (10)	0.0227 (2)
N1	1.10608 (14)	0.71092 (12)	0.03480 (10)	0.0140 (2)
C1	0.97376 (17)	0.78571 (15)	-0.00249 (12)	0.0153 (2)
H1A	0.9425	0.7817	-0.0943	0.018*
C2	0.88011 (17)	0.86906 (15)	0.08756 (12)	0.0163 (2)
H2A	0.7908	0.9249	0.0588	0.020*
C3	0.91878 (17)	0.86966 (15)	0.21982 (12)	0.0150 (2)
НЗА	0.8557	0.9249	0.2829	0.018*
C4	1.05220 (16)	0.78750 (14)	0.25870 (11)	0.0119 (2)
C5	1.14535 (16)	0.71214 (14)	0.16337 (11)	0.0116 (2)
C6	1.08930 (16)	0.78848 (14)	0.40348 (12)	0.0125 (2)
C7	1.30215 (17)	0.63029 (14)	0.20165 (12)	0.0135 (2)
N2	0.69146 (14)	0.43762 (12)	0.16715 (10)	0.0141 (2)
H2B	0.7342	0.4160	0.0912	0.017*
H2C	0.7898	0.5099	0.2445	0.017*
H2D	0.5948	0.4876	0.1572	0.017*
N3	0.37974 (15)	0.18365 (13)	0.44053 (10)	0.0153 (2)
H3B	0.3267	0.0846	0.4484	0.018*
H3C	0.2909	0.2425	0.4341	0.018*
H3D	0.4825	0.2498	0.5167	0.018*
C8	0.61920 (17)	0.27374 (15)	0.18108 (12)	0.0151 (2)
H8A	0.7223	0.2162	0.1869	0.018*
H8B	0.5102	0.1961	0.0980	0.018*
C9	0.55396 (17)	0.30690 (15)	0.31028 (12)	0.0152 (2)
H9A	0.4709	0.3846	0.3133	0.018*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H9B	0.6677	0.3655	0.3937	0.018*
C10	0.44394 (17)	0.14129 (15)	0.31345 (12)	0.0151 (2)
H10A	0.3310	0.0806	0.2295	0.018*
H10B	0.5275	0.0645	0.3141	0.018*
O5	0.09016 (13)	0.32465 (11)	0.34573 (9)	0.0181 (2)
H5A	0.0514	0.3400	0.4139	0.022*
H5B	0.1245	0.4204	0.3448	0.022*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0195 (4)	0.0172 (4)	0.0141 (4)	0.0004 (3)	0.0058 (3)	0.0077 (3)
02	0.0180 (4)	0.0143 (4)	0.0116 (4)	0.0020 (3)	0.0033 (3)	0.0045 (3)
O3	0.0190 (4)	0.0167 (4)	0.0132 (4)	0.0066 (3)	0.0045 (3)	0.0074 (3)
04	0.0254 (5)	0.0335 (5)	0.0210 (5)	0.0182 (4)	0.0135 (4)	0.0155 (4)
N1	0.0170 (5)	0.0128 (5)	0.0113 (5)	0.0027 (4)	0.0043 (4)	0.0047 (4)
C1	0.0183 (6)	0.0151 (5)	0.0113 (5)	0.0031 (4)	0.0019 (4)	0.0060 (4)
C2	0.0152 (6)	0.0165 (6)	0.0174 (6)	0.0054 (5)	0.0027 (5)	0.0079 (5)
C3	0.0159 (6)	0.0146 (5)	0.0146 (5)	0.0044 (4)	0.0059 (4)	0.0052 (4)
C4	0.0128 (5)	0.0100 (5)	0.0112 (5)	0.0003 (4)	0.0033 (4)	0.0040 (4)
C5	0.0129 (5)	0.0100 (5)	0.0107 (5)	0.0007 (4)	0.0033 (4)	0.0043 (4)
C6	0.0145 (5)	0.0136 (5)	0.0121 (5)	0.0066 (4)	0.0059 (4)	0.0056 (4)
C7	0.0144 (5)	0.0106 (5)	0.0136 (5)	0.0023 (4)	0.0035 (4)	0.0038 (4)
N2	0.0152 (5)	0.0150 (5)	0.0123 (5)	0.0031 (4)	0.0053 (4)	0.0056 (4)
N3	0.0165 (5)	0.0147 (5)	0.0150 (5)	0.0024 (4)	0.0038 (4)	0.0079 (4)
C8	0.0165 (6)	0.0131 (5)	0.0143 (5)	0.0027 (4)	0.0044 (4)	0.0048 (4)
C9	0.0170 (6)	0.0133 (5)	0.0148 (5)	0.0025 (4)	0.0053 (4)	0.0057 (4)
C10	0.0155 (5)	0.0149 (5)	0.0142 (5)	0.0033 (4)	0.0033 (4)	0.0062 (4)
05	0.0245 (5)	0.0168 (4)	0.0158 (4)	0.0061 (4)	0.0098 (4)	0.0077 (3)

Geometric parameters (Å, °)

1.2612 (14)	N2—H2C	0.9100
1.2495 (14)	N2—H2D	0.9100
1.2601 (14)	N3—C10	1.4905 (15)
1.2473 (15)	N3—H3B	0.9100
1.3380 (15)	N3—H3C	0.9100
1.3444 (14)	N3—H3D	0.9100
1.3902 (17)	C8—C9	1.5181 (16)
0.9500	C8—H8A	0.9900
1.3853 (16)	C8—H8B	0.9900
0.9500	C9—C10	1.5199 (16)
1.3961 (16)	С9—Н9А	0.9900
0.9500	С9—Н9В	0.9900
1.4008 (15)	C10—H10A	0.9900
1.5162 (15)	C10—H10B	0.9900
1.5258 (15)	O5—H5A	0.8200
1.4822 (15)	O5—H5B	0.8200
0.9100		
	1.2612 (14) $1.2495 (14)$ $1.2601 (14)$ $1.2473 (15)$ $1.3380 (15)$ $1.3444 (14)$ $1.3902 (17)$ 0.9500 $1.3853 (16)$ 0.9500 $1.3961 (16)$ 0.9500 $1.4008 (15)$ $1.5162 (15)$ $1.5258 (15)$ $1.4822 (15)$ 0.9100	1.2612 (14) N2—H2C 1.2495 (14) N2—H2D 1.2601 (14) N3—C10 1.2473 (15) N3—H3B 1.3380 (15) N3—H3D 1.3444 (14) N3—H3D 1.3902 (17) C8—C9 0.9500 C8—H8A 1.3853 (16) C8—H8B 0.9500 C9—C10 1.3961 (16) C9—H9A 0.9500 C9—H9B 1.4008 (15) C10—H10A 1.5162 (15) C10—H10B 1.5258 (15) O5—H5A 0.9100 U

C1—N1—C5	118.43 (10)	H2C—N2—H2D	109.5
N1—C1—C2	122.72 (11)	C10—N3—H3B	109.5
N1—C1—H1A	118.6	C10—N3—H3C	109.5
C2—C1—H1A	118.6	H3B—N3—H3C	109.5
C3—C2—C1	119.13 (11)	C10—N3—H3D	109.5
C3—C2—H2A	120.4	H3B—N3—H3D	109.5
C1—C2—H2A	120.4	H3C—N3—H3D	109.5
C2—C3—C4	118.75 (11)	N2—C8—C9	110.58 (9)
С2—С3—НЗА	120.6	N2—C8—H8A	109.5
С4—С3—НЗА	120.6	С9—С8—Н8А	109.5
C3—C4—C5	118.43 (10)	N2—C8—H8B	109.5
C3—C4—C6	117.43 (10)	С9—С8—Н8В	109.5
C5—C4—C6	124.13 (10)	H8A—C8—H8B	108.1
N1—C5—C4	122.47 (10)	C8—C9—C10	112.02 (9)
N1—C5—C7	116.06 (10)	С8—С9—Н9А	109.2
C4—C5—C7	121.45 (10)	С10—С9—Н9А	109.2
O2—C6—O1	126.29 (11)	С8—С9—Н9В	109.2
O2—C6—C4	117.55 (10)	С10—С9—Н9В	109.2
O1—C6—C4	115.97 (10)	Н9А—С9—Н9В	107.9
O4—C7—O3	126.58 (11)	N3—C10—C9	109.16 (9)
O4—C7—C5	117.09 (10)	N3-C10-H10A	109.8
O3—C7—C5	116.33 (10)	С9—С10—Н10А	109.8
C8—N2—H2B	109.5	N3-C10-H10B	109.8
C8—N2—H2C	109.5	С9—С10—Н10В	109.8
H2B—N2—H2C	109.5	H10A—C10—H10B	108.3
C8—N2—H2D	109.5	H5A—O5—H5B	105.4
H2B—N2—H2D	109.5		
C5—N1—C1—C2	2.11 (17)	C3—C4—C6—O2	-87.25 (13)
N1—C1—C2—C3	-2.61 (18)	C5—C4—C6—O2	91.67 (14)
C1—C2—C3—C4	0.55 (17)	C3—C4—C6—O1	87.95 (13)
C2—C3—C4—C5	1.79 (17)	C5—C4—C6—O1	-93.12 (13)
C2—C3—C4—C6	-179.22 (10)	N1—C5—C7—O4	9.82 (15)
C1—N1—C5—C4	0.43 (17)	C4—C5—C7—O4	-168.65 (11)
C1—N1—C5—C7	-178.02 (10)	N1—C5—C7—O3	-170.88 (10)
C3—C4—C5—N1	-2.37 (17)	C4—C5—C7—O3	10.65 (16)
C6—C4—C5—N1	178.71 (10)	N2-C8-C9-C10	168.92 (9)
C3—C4—C5—C7	176.00 (10)	C8—C9—C10—N3	-178.42 (9)
C6—C4—C5—C7	-2.92 (17)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!$
0.91	2.24	2.918 (1)	131
0.91	2.14	2.967 (2)	150
0.91	1.92	2.823 (1)	175
0.91	1.89	2.798 (2)	174
0.91	1.86	2.752 (2)	168
0.91	1.97	2.836 (2)	158
	<i>D</i> —H 0.91 0.91 0.91 0.91 0.91 0.91	D—H H···A 0.91 2.24 0.91 2.14 0.91 1.92 0.91 1.89 0.91 1.86 0.91 1.97	D—HH···AD···A0.912.242.918 (1)0.912.142.967 (2)0.911.922.823 (1)0.911.892.798 (2)0.911.862.752 (2)0.911.972.836 (2)

supplementary materials

N3—H3D···O3 ^{iv}	0.91	1.89	2.799 (1)	174	
O5—H5A···O1 ^v	0.82	1.91	2.702 (1)	161	
O5—H5B····O1 ⁱⁱ	0.82	2.52	3.094 (1)	128	
O5—H5B····O3 ⁱⁱ	0.82	2.15	2.890(1)	151	
C10—H10B····O2 ^{iv}	0.99	2.38	3.102 (2)	129	
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$; (ii) $x-1$, y , z ; (iii) $x-1$, $y-1$, z ; (iv) $-x+2$, $-y+1$, $-z+1$; (v) $-x+1$, $-y+1$, $-z+1$.					

sup-6

Fig. 2

